Noisy-LSTM: Improving Temporal Awareness for Video Semantic Segmentation

نویسندگان

چکیده

Semantic video segmentation is a key challenge for various applications. This paper presents new model named Noisy-LSTM, which trainable in an end-to-end manner, with convolutional LSTMs (ConvLSTMs) to leverage the temporal coherence frames, together simple yet effective training strategy that replaces frame given sequence noises. Our spoils frames and thus makes links ConvLSTMs unreliable; this may consequently improve ability of extract features from serve as regularizer avoid overfitting, without requiring extra data annotations or computational costs. Experimental results demonstrate proposed can achieve state-of-the-art performances on both CityScapes EndoVis2018 datasets. The code method available at https://github.com/wbw520/NoisyLSTM.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STFCN: Spatio-Temporal FCN for Semantic Video Segmentation

This paper presents a novel method to involve both spatial and temporal features for semantic segmentation of street scenes. Current work on convolutional neural networks (CNNs) has shown that CNNs provide advanced spatial features supporting a very good performance of solutions for the semantic segmentation task. We investigate how involving temporal features also has a good effect on segmenti...

متن کامل

Improving Semantic Video Segmentation by Dynamic Scene Integration

Multi-class image segmentation and pixel-level labeling of the frames that make up a video could be made more efficient by incorporating temporal information. Recently, Convolutional Neural Networks (ConvNets) have made an impressive positive impact on the single image segmentation problem. In this paper, in order to further increase labeling accuracy, we propose a method for integrating short-...

متن کامل

Hierarchical LSTM with Adjusted Temporal Attention for Video Captioning

Recent progress has been made in using attention based encoder-decoder framework for video captioning. However, most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., ”gun” and ”shooting”) and non-visual words (e.g. ”the”, ”a”). However, these non-visual words can be easily predicted using natural language model without considering visual...

متن کامل

Semantic segmentation and description for video transcoding

We present an automatic content-based video transcoding algorithm which is based on how humans perceive visual information. The transcoder support multiple video objects and their description. First the video is decomposed into meaningful objects through semantic segmentation. Then the transcoder adapts its behaviour to code relevant (foreground) and non relevant objects differently. Both objec...

متن کامل

Fast Bilateral Solver for Semantic Video Segmentation

We apply the fast bilateral solver technique to the problem of real-time semantic video segmentation. While structured prediction by a dense CRF is accurate on video datasets, the performance is not adequate for real-time segmentation. We hope to utilize the efficient smoothing methodology from the fast bilateral solver within the video segmentation framework introduced by Kundu et al. [9], imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3067928